Exploration Map Inpainting using Partial Convolution

Manish Saroya
Oregon State University

saroyam@oregonstate.edu

Abstract

The objective of the paper is to predict map structure
across a frontier in robot exploration problem. Map struc-
ture prediction in a partially known map could then be used
by decision-making algorithms which try to maximize in-
formation gain over fuel cost. This paper uses U-NET like
architecture with partial convolutional layers to predict un-
known areas in partially known subterranean tunnel maps.
We demonstrate that our approach can successfully predict
intuitive connections between unexplored tunnels.

1. Introduction

This project is motivated by the ongoing work on the
DARPA Subterranean (SubT) Challenge [2]. In this chal-
lenge, robots will be exploring unknown underground envi-
ronments, such as natural caves or man-made tunnels. They
will be tasked with discovering points of interest, such as
humans in need of rescue or incendiary devices that need to
be disabled. The goal is to:

e Maximize the information gained over the travel cost
e Minimize the time it takes to find points of interest.

Efficient robot exploration is one of the fundamental
problems in robotics. Lot of work has been done in predict-
ing the map across a frontier. In [11]] the authors maintain a
library of map structure to infer over an unexplored region
beyond a frontier and merge the inference into the robot’s
exploration map. This approach requires to maintain a big
library and inference over it while the robot is exploring,
this is computationally expensive. [5] uses a deep neural
network to select frontier by avoiding computationally ex-
pensive ray casting for computing the approximated infor-
mation gain. This approach, however, does not predict the
region beyond a frontier leading to inefficient exploration.

Our approach predicts regions across frontiers which can
be used to compute information gain. We train U-Net like
architecture with partial convolutional layers to predict the
unknown environment. Firstly, we procedurally generate

4321

Parijat Bhatt
Oregon State University
bhattpa@oregonstate.edu

a database of maps and then create masks over it to make
it partially known map. This hidden information is then
predicted by our network. While testing, the deep neural
network outputs the prediction in constant time. This can
be used by the robot during exploration.

2. Background

Although CNN has been around for quite some time,
[O1[8] made a breakthrough in machine learning by win-
ning the Imagenet challenge. With the advent of the inter-
net it has been possible to gather more and more data which
in turn has made it possible to train CNN by using GPU’s
thus giving high accuracy in a variety of image recogni-
tion tasks. One such is the task of image inpainting. Of-
ten times, we come across blurred images or image with
holes and we would like to restore these damaged images
or improve their texture. It has been a challenging problem
in the CV community for quite some time and it has only
now been possible with the use of deep networks to obtain
good results. It is important to note that old image tech-
niques of denoising algorithms do not completely apply to
image inpainting. Previously tried approaches involved us-
ing restoration of films, texture synthesis etc. [4] use motion
estimation and autoregressive models to interpolate losses
in films from adjacent frames. Other texture synthesis al-
gorithms can be used to complete a region to be inpainted.
PatchMatch[3]] , one of the widely known methods, itera-
tively searches for the best patches to fill in the holes. While
this approach generally produces smooth results, it requires
domain knowledge. A limitation of previous approaches
has been in using a fixed location for patches. We believe
these limitations can lead to overfitting. We don’t use the
case of irregular holes but our hole’s location is randomly
selected for each image in the dataset.

3. Methods

In this section, we first explain how synthetic map
database and mask for each image is generated followed
by our architecture and finally the loss functions used in our
model.

3 3 3 3
32X32 32X32 32X32 32X32
64 64 64 64
16X16 I 16X16 16X16 16X16
128 128 128 128
8X8 8X8 8X8 8X8
256 256
4X4 4X4
—/ Upsampling ‘.‘
| B Mask
—/3 Convolution
(— Downsampling [l
[Concatenation
Figure 1. Deep neural network architecture for image size 32x32 pixels
3.1. Map generation

Our deep neural network needs thousands of maps on
which to learn an accurate model, however there is a very
limited set of available subterranean mine maps. Therefore,
we must generate our synthetic dataset in order to train the
network. We used the algorithm described below to gen-
erate a set of connected tunnel maps on which to train our
network.

input : Map Size S = [32, 32], Number of points P
output: Generated Map
Entrance <— (0, floor(y/2)) Robot’s Start
piist = sample P points on the grid
tree = ||
add Entrance to tree
for : €p;ist do
find p nearest to i in tree
connect p and i by shortest path
add p to tree
end

Fig2]shows sample maps in procedurally generated syn-
thetics database. Our database consists of 50,000 maps
which we use to train our deep neural network.

3.2. Mask Generation

We use a square mask of size 10x10 pixels for the im-
ages of size 32x32 pixels with the goal of keeping the mask

4322

Figure 2. Set of procedurally generated world maps in Gazebo

size(the patch) to be around 20 percent of the total size.
The patch is always generated along the sides(boundaries
of maps) and its location is chosen randomly. For each im-
age, we chose one of the sides randomly first(4 sides of a
square) and then a starting location for a patch is chosen
randomly. Choosing patch positions randomly allows us to
reduce variance during training thus reducing error. One of
our goals has been to make predictions for a robot that has
access to a partially known map. Providing patches along-
side the boundary allows us to achieve this goal. The un-
masked region may be considered as the map area known
to the robot or the area that it has already explored and the
masked area is what it would like to have a prediction for.

3.3. Architecture

We use a UNET-like architecture as shown in Fig. [I] The
Top left image shows the ground truth image, top right im-
age shows the mask, bottom left shows the masked image,
bottom right shows the prediction of the neural network. In
this case, network is able to make multiple axis.nput to the

model is 3 images: ground truth, masked image and the
mask. The sizes for all the three are 32x32 pixels. We gen-
erated only grayscale images for our dataset and converted
the 32x32x1 into 32x32x3 by duplicating the 1 channel into
3 channels. This image is then passed through a convo-
lution layer of kernel size 7, stride 2, padding 3 and out-
channels being 64. So the output of this layer comes to be
16X16X64. The third dimension is the number of channels
here. The output of every layer is as follows:

Type | Kernel | Stride input output
down 7 2 32x32x3 16x16x64
down 5 2 16x16x64 8x8x128
down 5 2 8x8x128 4x4x256
down 3 2 4x4x256 2x2x512
up 3 1 4x4x(256+512) | 4x4x256
up 3 1 8x8x(256+128) 8x8x128
up 3 1 16x16x(128+64) | 16x16x64
up 3 1 32x32x(64+3) 32x32x3

Down-sampling means that the size of the image or out-
put from a CNN is being reduced and up-sampling means
the size is being increased (doubled here). The padding for
down-sampling layer with kernel size *7’ is 3, for ’5’ and
"2’ it is 2 and 1 respectively. Padding is 1 for upsampling
layers. To perform upsampling we take up the output of
the previous layer and interpolate by a scaling factor of 2.
Then it is concatenated with the output of a downsampling
layer such that the two have the same first 2 dimensional
sizes. This only increases the number of channels. So the
output 2x2x512 of last convolutional layer is up-sampled to
4x4x512 and then concatenated with 4x4x256 to result in
4x4x(256+512). This data is then passed through a CNN
layer to produce 4x4x256. The whole process of upsam-
pling and concatenation is repeated again.

3.4. Loss Function

We adapt our loss function from the image inpainting for
irregular holes paper [10].

Ltotal = 100 * Lvalid +10.5 * Lholes + 0.05 * Lperceptual+
IQO(LStyleout + Lstylecomp) + 2Ly,
1

Where L, qi;q is the L1 loss for non hole regions, Ly jes 18
L1 loss for the holes regions. Ly, ceptuai 1S the perceptual
loss defined in [6]. Lty is the style loss similar to [6]]. Ly,
is the smoothing penalty total variance loss [[7]].

We manually tune the weight parameters for the above
loss equation. We keep L,qi;4 weight as high as 100 be-
cause we want to replicate the non-holes region the same as
the input image. For weight of L;,,;.s, We compute
w = total Pizel /white Pizel over our data-set. We take
other loss weights from [10]].

4323

4. Experiments

Our experiments involved using a variety of training
sets(different image sizes), hyperparameters and optimiza-
tion algorithms, different number of CNN layers. The ac-
tual implementation of UNET in [1]] starts with the image
size of 512 x 512 and reduces the size after downsampling
to 2x2x1024. We tried the architecture shown in the figure
with 256x256 images and faced memory overflow problem
for CUDA. It is important to mention that we could not use
the pelican server to a large extent due to limited disk stor-
age capacity which exceeds only after installing conda and
pytorch. Our resources include a desktop in Graf Hall with
8 GB GTX 1080 and a laptop with 6 GB GTX 1060. The
data generation part would take approximately 30 minutes
to produce 5 GB of data for 10K images. The Cuda mem-
ory runs out after a few iteratiThe Top left image shows the
ground truth image, top right image shows the mask, bot-
tom left shows the masked image, bottom right shows the
prediction of the neural network. In this case, network is
able to make multiple axis.ons. We, later on, switched to
a small 64x64x3 sized images which would produce results
but they were not up to the mark. A reason for this may be
that the width of tunnels in our synthetic map is only 1 pixel
and 64 image size may be too large for the network to learn
the tunnel structures.

Later, we reduced the map size to 32x32x3 and increased
the dataset to 40K images. We trained the network for 512
epochs for 9 hours approximately to produce results. This
was done a few times while searching for the learning rate
for ADAM optimization. The final batch size used was 64
but experiments were also done with 32 and 16 for 32x32x3
image size. The loss curves for different losses used are
shown in Fig. 3 where the red line is training loss and blue
represents validation loss. The curves show normal trends
of train and test losses. The training error is lesser than test
for most losses while it overlaps with the test loss for Ly,q;4-

5. Results

Our architecture is able to predict intuitive connections
in the unknown regions of a map. Fig. [4| shows that the
network can predict L shaped tunnel connections and the
width of predicted tunnels are same as that of known parts
of tunnels. Fig. [5]shows the tunnels can be extended along
the axis of the tunnel, similarly Fig. E] shows the tunnels can
be extended in a perpendicular direction. Fig. [/|shows the
network can predict multiple connections.

6. Conclusion and Future Work

We observe through experiments, that our model does
learn tunnel structures in the map when it is trained on
our dataset. It can redraw T-points and loops when trained
on 40,000 images for 400,000 iterations with properly

loss_hole loss_prc loss_style
7.00 !
0.195 \
0180 || 6.00 1|
0.185 \ \
I i \ 5.00
0.175 | -jh}\'._ }\/\f 0140 | 4
0.165 f v A 1 \A _\ 4.00 !
AN 0.100 -
0.155 APt e Y | 3.00 A R
0.145 0.0600 2.00
0.000 100.0k 200.0k 300.0k 50.00k 150.0k 250.0k 350.0k 0.000 100.0k 200.0k 300.0k 400.0k
nEE DED EE
loss_tv loss_valid
10.0 li
0.545 . |
.\ a0 WL r 8.00 {
¥ 1
¥ \
0.535 LA ’ Vil | v 6.00 '-,.
)\-'] i !
0.525 ! 4.00 \
2.00 e
0.515 —_—
0.00
0.000 100.0k 200.0k 300.0k 400.0k -50.00k 50.00k 150.0k 250.0k 350.0k

[(M

ra
[

Figure 3. Training and testing loss for all 5 components are shown. The red curve represents training loss and the blue curve represents

validation loss.

tuned loss parameters. This predicted map can be used by
decision-making algorithms to maximize information gain
over traveling cost. We tried to obtain results for synthetic
maps using an online available model trained on imagenet
and the results were observed to be not good. This is per-
haps there is a difference in distribution between our syn-
thetic map dataset and the imagenet dataset. We also ob-
serve that ratio between the tunnel width and the size of the
image can be a very significant factor for our model to learn.

The performance of our model is owed to the robustness
of U-NET architecture and efficacy of partial convolution. It
was interesting to see that the model would just not fill holes
but can also learn to draw T-points. Results are promising,
and in future, we would like to work with more realistic
maps; may be using different masks for the same image.
We would like to see how would W-GAN perform on our
problem.

References

[1] [1505.04597] u-net: Convolutional networks for biomedi-
cal image segmentation. https://arxiv.org/abs/
1505.04597. (Accessed on 03/23/2019).

[2] DARPA subterranean challenge. https://www.

subtchallenge.com/. Accessed:2019-02-22.

generalized_pm.pdf. https://gfx.cs.princeton.
edu/pubs/Barnes_2010_TGP/generalized_pm.

pdf. (Accessed on 03/23/2019).

Interpolation of missing data in image sequences - ieee jour-

nals & magazine. https://ieeexplore.ieee.org/

(3]

(4]

4324

(5]

(6]

(7]

(8]

(9]

(10]

(11]

document /469932, (Accessed on 03/23/2019).

S. Bai, F. Chen, and B. Englot. Toward autonomous mapping
and exploration for mobile robots through deep supervised
learning. In 2017 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 2379-2384, Sep.
2017.

L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm
of artistic style. CoRR, abs/1508.06576, 2015.

J. Johnson, A. Alahi, and F. Li. Perceptual losses
for real-time style transfer and super-resolution. CoRR,
abs/1603.08155, 2016.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097-1105. Curran Associates, Inc., 2012.

Y. LeCun and Y. Bengio. The handbook of brain theory and
neural networks. chapter Convolutional Networks for Im-
ages, Speech, and Time Series, pages 255-258. MIT Press,
Cambridge, MA, USA, 1998.

G. Liu, E A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and
B. Catanzaro. Image inpainting for irregular holes using par-
tial convolutions. In The European Conference on Computer
Vision (ECCV), September 2018.

A.J. Smith and G. A. Hollinger. Distributed inference-based
multi-robot exploration. Autonomous Robots, 42(8):1651—
1668, Dec 2018.

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://www.subtchallenge.com/
https://www.subtchallenge.com/
https://gfx.cs.princeton.edu/pubs/Barnes_2010_TGP/generalized_pm.pdf
https://gfx.cs.princeton.edu/pubs/Barnes_2010_TGP/generalized_pm.pdf
https://gfx.cs.princeton.edu/pubs/Barnes_2010_TGP/generalized_pm.pdf
https://ieeexplore.ieee.org/document/469932
https://ieeexplore.ieee.org/document/469932

True image

10

30

x
Masked Image for PATCH_SIZE = 10

10 20 0

masked_x

25 3

Figure 4. The Top left image shows the ground truth image, top right image shows the

Mask is

mask_x
output image

25 30

10

15
output_x

20

mask, bottom left shows the masked image, bottom

right shows the prediction of the neural network. In this case, network is able to redraw a L shaped tunnel.

True image

1

30

x
Masked Image for PATCH_SIZE = 10

masked _x

30

Mask is

0

15
mask_x
output image

20 25 30

o

10

25 30

10

15
output_x

20

Figure 5. The Top left image shows the ground truth image, top right image shows the mask, bottom left shows the masked image, bottom
right shows the prediction of the neural network. In this case, the network is able to extend the tunnel along the tunnel’s axes.

4325

True image Mask is

30

30

mask_x
output image

x
Masked Image for PATCH_SIZE = 10

10 15 20 25 30
masked_x output_x

Figure 6. The Top left image shows the ground truth image, top right image shows the mask, bottom left shows the masked image, bottom
right shows the prediction of the neural network. In this case, the network is able to extend the tunnel perpendicular to tunnel’s axes.

True image Mask is

10

30 30

5 0 15 20 25 30
mask_x
output image

0

x
Masked Image for PATCH_SIZE = 10

10 5 20
output_x

Figure 7. The Top left image shows the ground truth image, top right image shows the mask, bottom left shows the masked image, bottom
right shows the prediction of the neural network. In this case, the network is able to make multiple axes.

4326

